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Forward Pion-Pion Scattering in the l^ Theory* 
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(Received 17 July 1963) 

An exact expression is obtained for the sum of the bubble diagrams for forward pion-pion scattering in 
the A<£4 theory, with zero mass internal pions. The exact solution of the problem for massless internal pions 
follows naturally from the solution of the Bethe-Salpeter equation, with the bubble-exchange kernel, which 
is the asymptotic limit of the equation for pions with finite mass. 

INTRODUCTION 

IN this work we obtain an exact solution to the for­
ward pion-pion scattering Bethe-Saltpeter equation 

arising from the sum of bubble-exchange diagrams in 
the JX04 theory with massless pions. In the high-energy 
limit, E—» oo ? the forward scattering amplitude f(E) 
takes the form 

£(1+2X)_;[ 

/ (£) „ _ , . , (1.1) (ln£) 1/2 

where A2=X2/32TT4. 
This model is of interest for the following reasons: 

(1) The integral equation which we solve is of a non-
Fredholm type. The model thus represents at least one 
aspect of a general field theory which is not present in 
potential theory. 

(2) Most of the current results on the high-energy 
limit of scattering amplitudes have been obtained by 
summing the most singular terms in each order of 
perturbation theory.1 In particular this technique has 
been applied by Sawyer1 to the above model. This sum­
mation procedure yields explicit expressions for high-
energy scattering amplitudes only in the weak-coupling 
limit. We can then test the validity of such a procedure 
by comparing Sawyer's result with the weak-coupling 
limit of Eq. 1. 

(3) The exact solution to this simple model may be 
useful to reduce a more general problem with the same 
singular behavior to a Fredholm integral equation. 

The method we employ is due to Bjorken2 who has 
recently investigated the properties of the full J\</>4 

theory with all propagators modified so as to produce 
the convergence of the unrenormalized perturbation 
theory. Bjorken separates the four-dimensional scatter­
ing Bethe-Saltpeter equation using TschebyschefT poly­
nomials, Cw(cos0). He then uses analytic continuation in 
the n plane in analogy with Regge's use of analytic 
continuation in the angular momentum plane.3 

* Supported, in part, by the U. S. Atomic Energy Commission 
under Contract A.T. (45-1) 1388, Program B. 

f Alfred P. Sloan Foundation Fellow. 
1 R. Sawyer, Phys. Rev. 131, 1384 (1963); J. D. Bjorken and 

T. T. Wu, Phys. Rev. 130, 2566 (1963); and P. G. Federbush and 
M. T. Grisaru, Ann. Phys. (N. Y.) 22, 263 (1963). 

2 J. D. Bjorken (to be published). 
3 T . Regge, Nuovo Cimento 18, 947 (1960), and 14, 951 (1959). 

The present work was undertaken in order to see how 
Bjorken's results are modified when this method is ap­
plied to some of the simple renormalized diagrams of the 
unmodified <£4 theory. 

In Sec. II we review Bjorken's method with reference 
to the bubble exchange diagrams and note the non-
Fredholm nature of the equation. In Sec. I l l , we see 
that by solving an equation whose kernel is the asymp­
totic limit of the original kernel we can reduce the 
original equation to a Fredholm equation. This asymp­
totic problem then leads us naturally to the zero mass 
equation. In Sec. IV we use the Watson-Sommerfield 
transformation to obtain an explicit integral representa­
tion for the solution to the mass zero forward scattering 
amplitude. In Sec. V this integral is evaluated in the 
high-energy limit. 

II. THE BETHE-SALPETER EQUATION 
IN THE n PLANE 

The Bethe-Salpeter equation for the forward scatter­
ing amplitude A (kq) for the mesons of four momenta k 
and q due to bubble exchange diagrams (Fig. 1) is 

A(kq) = B(kq)-
# r ftW B( 

J (lirYik'2 

£(kk') 
-^(k'q), (H.1) 

(2TT)4 (£ ' 2 +M 2 ) 2 

where B(kq) = 3 [ - ( k - q ) 2 ] + £ [ - (k+q)2] with 

X2 

B(x)= (x—xo)-
16TT2 

r do 

X — 
J 4M

2 0 ' 

dx'(l-4:n2/x')112 

-Xo)(xf—x+ie) 
+B(xo), (H.2) 

#o is an arbitrary subtraction point. We use a space-like 
metric: &2=K2—&o2. Now A(kq) is a function of k2, q2, 

FIG. 1. Typical bubble-exchange diagrams. 
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where 

FIG. 2. Direct inter­
action diagram. 

and k«q. For physical values of k and q, k2=q2=—fi2 

and — k'q=nE where E is the laboratory energy and \i 
is the meson mass. We can define an angle 6kq as 

COS0 

k-q 
kq~ (H.3) 

(£2^2)1/2 

COSdkq>l. 

Following Bjorken, we analytically continue Eq. 
(II . l) to the region k2>0, g2>0, cos(9^<l. Then 
Eq. (II. l) becomes an equation over a four-dimensional 
Euclidean region with scalar products k2=K2+ko2. 

A(k2,q2, cosdkq) = B(k2,q2, cos0fc(z) 

ftW B(k2,k'2,cos$kk,) 

+ (2TT)4 (£'2+M2)2 
^ ( f t ' ^ c o s f c O . (II.4) 

The four-dimensional integral over kr in (II.4) can be 
written as 

' = lk*dk'd 

where d£lkf is the element of solid angle of a four-
dimensional sphere. 

We now expand A (k2,q2, cosdkq) in terms of the 
Tschebyscheff polynomials, 

Cw(cos0) = sin(>+ l)0/sin0, (II.5) 

A(k2,q2, cosdkq) = f ) An(k,q)Cn(cQs6hq). (II.6) 
n=0 

These polynomials have the property, 

— dQkCn(co$dik)Cm(cosdkf) = Cn(cos6if). (11.7) 
2TT2J n+1 

From Eqs. (II.4), (II.6), and (II.7) we get the following 
equations for An(k,q)n>i 2: 

An(k,q) = Bn(k,q) 

8TT20 n+\)Jo 

00 h'Mh' k'HV 

(k'2+»2)2 
•Bn(k,k')An(k'yq), 

2 r* 
Bn(k,q) = - / 

7T J o 

dd sin205 (k2,q2, cos0)Cw(cos0). (II.9) 

From Eq. (II.2) we get the following expression for 
Bn(k,q),iovn>2'. 

X2 r00 /x ' -4 M
2 y / 2 

Bn(k,q) = -
kqSir2 J 4/*: 

/ dx\ ) 

x 

I 

/xf+k2+q2\2 n1/2 / ; /x'+k2+q2' 

2kq 

neven>2, (11.10) 
Bn(k,q) = 0, nodd. 

Equation (II.8) admits an iteration solution for n>2. 
Thus the divergence in Eq. (II.l) which is reflected in 
Eq. (II.8) by the divergence of Bo, contributes only to 
Ao. Likewise the direct pion-pion interaction diagram 
of Fig. 2, whose contribution to B(kq) has not been con­
sidered, contributes only to Ao. Now the n=0 contribu­
tion to Eq. (II.6), is independent of E. Thus, aside from 
an infinite constant which is removed by renormaliza-
tion we can write 

A(k2,q2,cos9kq)==JL An(k,q)Cn(cosdkq), (11.11) 

where An(k,q) satisfies Eq. (II.8) with Bn(k,q) given by 
Eq. (11.10). 

This procedure is identical to Bjorken's. The results 
will essentially be different, however, since the integral 
Eq. (II.8) is not of the Fredholm type. Thus, although 
Eq. (II.8) for the kernel Bn(k,q) can be continued into 
the complex n plane as an analytic function of n for 
Ren>0, the solution An of Eq. (II.8) will possess quite 
distinct analytic properties. If the usual Fredholm 
theory had been applicable, we could have inferred 
the analytic properties of An for Ren>0 directly from 
the form of the Fredholm solution.2'4 

I t is the behavior of Bn(k'fi) in the region where k 
and hr are both large and comparable that produces the 
non-Fredholm nature of Eq. (11.10). Our approach then 
will be to find an equation with the same asymptotic 
properties in k'2 which we can solve exactly. 

III. THE ASYMPTOTIC EQUATION 

Let Bon(k,q) be the limit of Bn(k,q) as either k2 or q2 

become large. The integral Eq. (11.10), in this limit is 
readily carried out and yields 

Bon(k,q) = — - ( - ) ( - ) q>k, 
ST2Ln\q/ n+2\q/ J 

_ilrw__!/«Y,*i t>q. 
8ir2UW n+2\k/ J 

(III.l) 

for n> 2 , (II.8) 4 L. Brown, D. Fivel, B. W. Lee, and R. Sawyer (to be published). 



F O R W A R D P I O N - P I O N S C A T T E R I N G I N X04 T H E O R Y 2293 

Equation (II.8) can then be replaced by the two equa­
tions whose sum is Eq. (II.8) 

1 
An(k,q) = In(k,q)-

where 

0 + 1 ) 8 T T 2 

r dk'k'6 

x/ 
Jo (£'2+M2) 

-Bon(k',k)An(k',q), (IIL2) 

In(k,q) = Bn(k,q)- —f 
- i )87r 2 ; 0 

dk'k'* 

(n+l)ST2J0 (&'2+M2)2 

XZBn(k
f,k)-Bon(k',k)^An(k',q). (III.3) 

We first solve Eq. (III.2). This yields an expression for 
An(kq) of the form 

An=In+JKJn, (III.4) 

where Kn is the resolvent kernel of Eq. (III.2.) Then 
from Eqs. (III.3) and (III.4), we get an equation for 
An(kq) of the form 

An=Bn-\- J KnBn-\- I (Bn—Bon)An 

+ f (Kn(Bn-B,n)An. (III.5) 

We expect the Fredholm theory to be applicable to 
Eq. (III.5) since it's kernel involves Bn(k,k,)—Bon(k,k/). 
In particular the essential features of the solution due to 
the high k and kf behavior of the kernel (non-Fredholm 
nature) should be contained in the inhomogeneous term 
of Eq. (III.5) with Bn replaced by BQn. That is, we 
expect 

(IIL6) An=Bon-\- I KnB 

plus corrections, which can be treated by the usual 
Fredholm method. 

The integral Eq. (III.2) is easily reduced to an 
inhomogeneous fourth-order differential equation which 
we have not been able to solve. However, if we set fx=0j 
the solution is elementary and is 

X2 

An(k,q) = In(k,q)-\ 
2 [ > + l ) 2 + X 2 ] 1 / 2 

[ 1 rhdk'/k'\«i 

1 rkdk'/k'y> 

— / - A T ) '•(*'.«> 

«2 J 0 R \R ' 

XX J k k'\k'/ 

i r dk'/ k\«* i 
- / — ( - ) J-(*' .«) . ( m - 7 ) 
«i A k'\k'/ I 

aiJic 

« i = [ ( » + l ) 2 + l - 2 ( ( n + l ) 2 + X 2 ) 1 ' 2 ] 1 / 2 , 

« 2 = [ ( w + l ) 2 + l + 2 ( ( » + l ) 2 + X 2 ) 1 / 2 ] 1 ' 2 . 
(III.8) 

By direct substitution we can verify that Eq. (III. 7) 
satisfies Eq. (III.2) with JU=0 provided I(kf,k) vanishes 
suitably at k' = 0 and k'= oo. 

We cannot use the solution Eq. (III.7) to reduce 
Eq. (II.8) to a Fredholm problem because by setting 
fx=0, we have incorrectly treated the low k2 behavior of 
Eq. (III.2). However, we should be able to use in Eq. 
(III.6) the fjL = 0 resolvent given by Eq. (III.7) to obtain 
the correct high k2 behavior of An(k,q). This follows 
from taking the high k2 limit of Eq. (III.2) and solving. 

Setting In(k,q) — Bon(kyq) and the carrying out the 
integrals in Eq. (III.6) we get the following approxima­
tion for An(k,q) 

2ir2\2(n-
An(kyq)--

[ > + l ) 2 + \ : 

2TT 2 X 2 (H-1 ) 

[ > + l ) 2 + X 2 

= 0 , n odd. 

\*yi.ai\k/ a2\k/ J 

.) r 1 /k\al 1 / ^ \ a 2 l 

]^Uy ~^V J' q> 

(IH.9) 

We note that Eq. (III.9) is the solution of Eq. (III.2) 
with I=Bon and /x=0. However, Bon is also the exact 
value of the integral (11.10) for Bn with ju = 0. Thus the 
expression Eq. (III.9) for An(kyq) is also the exact solu­
tion of (II.8) for fx=0. Then combining Eqs. (III.9) and 
(11.11) we obtain the exact solution to zero mass 
Eq. (II. 1). We could, of course, write down the zero-
mass equation directly, but we also wanted to point its 
connection with high k2 limit of the finite-mass equation. 

IV. THE MASS ZERO SOLUTION 

The exact solution of the zero-mass problem is then 
obtained by inserting the expression for An{k,q) given 
in Eq. (III.9) in Eq. (11.11). After carrying out the sum­
mation over n, we must finally continue the result to 
physical values of k2, q2 and cos0 to obtain the forward 
scattering amplitude. 

We can write Eq. (11.11) as (calling 6kq=6) 

A (k2,q2, cos0) 

°° rCn(cOSd) + Cn(— COS0)l 
= HAn(k,q)\ (IV.l) 

n=2 L 2 J 

since ^4n=0, n odd. 
We now use the usual Sommerfield-Watson transfor­

mation to evaluate Eq. (IV.l), as done by Regge3 in the 
/ plane and Bjorken2 in the n plane. 

In order to carry out this transformation we must 
find a suitable analytic continuation A (n,k,q) of An(k,q) 
to complex n such that 

as 
<x%J% 

A(n,k,q)^e~ 

T > 0 , 
(IV.2) 
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This is easily done by choosing the branch cut of the 
square roots in Eq. (III.9) as follows: 

(1) A branch cut from n= — 1—iX to n= — 1+iX due 

(2) An additional branch cut from n= — 1+ (1 — 2X)1/2 

t o ^ = - l + ( l + 2 X ) 1 / 2 d u e t o a i = [ ( ^ + l ) 2 + l - 2 ( ( ^ + l ) 2 

+X 2) 1 / 2] 1 ' 2 . 
(3) An additional branch cut from n = — 1 — (1+2X)1/2 

t o^=- l - ( l -2X) 1 / 2 due toa 2 =C(^+ l ) 2 +l+2( (^+ l ) 2 

+X2)1 '2]1 '2 . 

See Fig. 3. 
The sign of the square roots are chosen so that ai and 

a2 —» +Re^ as Re^ —» <*>. Then if q>k, A (n,k,q) satis­
fies Eq. (IV.2) with r=]nq/k. 

-l-./i+eT" -I V P F T 
-®E S - ~i 

- ^ 

(j)-l~i\ 

Im n 

^ ~ 
-ivi+zr 

Re n 

FIG. 3. Cuts in the n plane. 

With this definition of A (n,k,q) we can write 

1 r dn 
A(k2,q2,cosd) = — (f) — A(n,k,q) 

4d J c sin7ra 
X[C„(cos0)+C»(-cos0)], (IV.3) 

where C is the contour of Fig. 4, which encloses the real 
n axis greater than two. Using the properties of Cn(cos0) 
and A (n,k,q) for large Re^ we can deform the contour to 
a line L parallel to the imaginary axis. The line 
capital L lies between n=2 and n= — 1+(1+2X)1/2 

which is the position of the singularity of A(n,k,q) 
which lies farthest to the right in the n plane (see Fig. 5). 
This deformation is valid provided 

and 

Im0<r=ln-
k 

O < R e 0 < 7 r ; 

Im n 

-fe Re n 

FIG. 4. Contour C. 

Im n 

V L 

HV&£x n=2 Re n 

FIG. 5. Contour L. 

this is the region in the 6 plane for which the integral 
over the large semicircle can be neglected. After this 
deformation has been performed, we can analytically 
continue the resulting integral into the physical region 

E 
cos0=— > 1 , 

k2=q2=—fi2. 

(IV.4) 

We let cos0 become large by increasing Im0 and 
keeping 7r>Re#>0. The integral over L continues to 
converge and we obtain as our final result for the for-

Im n 

•I+VI+EX 
Re n 

FIG. 6. Contour L deformed. 

ward scattering amplitude 

A{E) = - [ -^A(n)\cn(-)+cj( Yl, (IV.5) 
4i./z,sin7ra L \ / x / \ fx/J 

with 

A(n)--
2TT 2 X 2 0+1) 

where 
[(»+l)H-X2]1/2Lai(») a2(n) 

[J Ll, 
Lai(n) a%(n)J 

(IV.6) 

aiW={(«+l) 2+l-2[(#+l) 2+X 2 ] 1 ' 2} 1 / 2 , 

«*(») = {(»+1)2+1+2[(»+ 1)»+X*]W} w 
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with branches as denned above. The single integral 
(IV.5) over elementary functions is then the sum of 
bubble-exchange diagrams in the <£4 theory with internal 
mesons of mass zero. The mass /x of the external mesons 
must be left nonzero. 

V. THE HIGH-ENERGY LIMIT 

The contour L can be removed to the left and de­
formed as it passes the branch point as n= — l 

The expression for the high-energy limit Eq. (V.6) in 
the weak-coupling limit can be obtained from the tech­
niques used by Sawyer when applied to the problem of 
zero-mass internal pions,5 and our results in this sense 
confirm those of Sawyer in the weak-coupling limit. Of 
course, our results also give the high-energy limit for the 
problem of zero-mass internal pions for general X not in 

5 R. Sawyer (private communication). 

+ (1+2X)1/2 as in Fig. 6. Now since 

The leading contribution at high energy to A (E) will 
come from the portion P of the deformed contour V 
which encircles the right end of the branch cut. The 
discontinuity AA (n) of A (n) across P is from Eq. (IV.6) 

the weak-coupling limit. If our results are compared to 
Sawyer's results (Ref. 1) in which the mass of the pions 
is retained in the propagators, the position of the leading 
singularity in the weak-coupling limit is the same as that 
of Sawyer; however, the nature of the singularity is 
different. He obtains a square-root type singularity in 
the numerator rather than in the denominator of the 
partial-wave amplitude. Hence, the nonzero, mass 

4 T T 2 X 2 0 + 1 ) 1 
AA 0 ) = . (V.2) 

[ ( ^ + l ) 2 + X 2 ] 1 / 2 { ( ^ + l ) 2 + l - 2 [ ( ^ + l ) 2 + X 2 ] 1 / 2 } 1 / 2 

Let n+l= ( l+2X)1 / 2+x. The contribution of the integral along P to Eq. (IV.5) is 

4 T T 2 X 2 

A(EY 

X 

U 

0 ^ [ ( l + 2 X ) 1 / 2 + x ] { e x p [ ( - 1 + ( l+2X) 1 / 2+x) l n ( 2 E / M ) ] + e x p [ ( - 1 + (l+2\)lf2+x) ln ( -2E/ /*) ]} 

-*o C ( ( l + 2 X ) 1 / 2 + * ) 2 + X ^ 

(V.3) 
where xo is the distance P extends along the branch cut. 

As E —* oo, the dominant contribution to (V.3) comes from the neighborhood of x=0. We can then approximate 
Eq. (V.3) in the limit E —> » by 

7r2X2(l+2X)l/2 

A(E) 
i ( l + X ) s i n x ( ( l + 2 X ) 1 / 2 - l ) 

l + ( l + 2 X ) 1 / 2 + : 

{(1+2X)1 '2[2XV(1+X)]}1/2 

/•" ^ { e x p [ ( - l + ( l + 2 X ) 1 / 2 + « ) l n ( 2 £ / M ) ] + e x p [ ( - l + ( l + 2 X ) 1 / 2 + x ) ln( -2E/ /») ]} 
x ; . . . . • . - . , . . • > (v-4) 

—.n-6/2X3/2(l+2X)1/4 

A (£) ~ ( s inx[ ( l+2X) 1 / 2 -1 ] ) - 1 

/ e x p { [ ( l + 2 X ) ^ - l ] l n ( 2 £ / i u ) } e x p { [ ( l + 2 X ) 1 / 2 - l ] l n ( - 2 £ / M ) } \ 

\ [ ln(2£/M)]1 / 2 [ ln(-2E/ ju)] 1 / 2 / 

Equation (V.5) then gives the high-energy limit of our exact expressions Eq. (IV.5) for A (E). In order to compare 
with the result of Sawyer we take the weak coupling limit of Eq. (V.5) and get 

-^ 2X 1 ' 2 rexpCXln(2£/ i U ) ] e x p [ X l n ( - 2 £ / M ) ] - | 
A (E) + , (V.6) 

21'2 L [ln(2£/M)]1'2 [ ln(-2£/M)]1 '2 J 

X-*0 , £ - > o o . 
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changes the nature but not the position of the leading 
singularity. 

VI. CONCLUSIONS 

(1) We have seen that the exact sum of bubble graphs 
in the massless <£4 theory has analytic properties in the 
n plane distinct from the potential theory situation 
where the Fredholm theory is applicable.4 

(2) The weak-coupling limit of our result agrees with 
Sawyer's result for massless pions obtained by summing 
the most singular terms of perturbation theory. Com­
parison with Sawyer's result for massive pions shows 
that neglect of the pion mass does not alter the position 
of the leading singularity (at least in the weak-coupling 
limit). 

(3) Our third motive which was to reduce a more 
general problem to a Fredholm equation has been only 
partially carried out. What remains to be done is to 
solve Eq. (III.2) with M ^ O . 

(4) The method of Bjorken seems to be a very useful 
technique for solving the forward scattering problem. 
The resulting equations are much simpler than the 
usual partial-wave equations. 
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Meson Production in p+d Collisions and the 7=0 «-« Interaction. I. Measured 
Momentum Spectra of He3 and H3 Nuclei from High-Energy p+d Collisions* 

ALEXANDER ABASHIAN,! NORMAN E. BOOTH, J KENNETH M. CROWE, ROGER E. HILL , ! AND ERNEST H. ROGERS§ 

Lawrence Radiation Laboratory, University of California, Berkeley, California 
(Received 17 June 1963) 

The momentum spectra of He3 and H3 nuclei produced in p-\-d collisions have been measured with high 
resolution. Data were obtained at several angles and incident proton energies of about 745 MeV. Each 
spectrum exhibits a peak due to single pion production and a continuum due to double pion production. An 
anomalous bump has been observed in the He3 spectra which we interpret as an 7 = 0 virtual di-pion with 
a scattering length of 2 h/i*c. In this series of four papers we summarize the data obtained over a series of 
three cyclotron runs. The first paper deals with the experiment and techniques, and the second with the 
results of the measurements on single-pion production. Next we describe an experiment to determine the 
spin and parity of the anomalous bump, and finally we discuss its interpretation. 

I. INTRODUCTION 

IT is widely known that in a nuclear or elementary-
particle interaction, if one measures the energy 

spectrum of one type of outgoing particle, information 
about the nature of the remainder of the outgoing 
particles can be obtained. In particular, there is a 
unique (although sometimes double-valued) correspond­
ence between the vector momentum of one of the par­
ticles and the total energy in the rest system of the 
remaining particles. Any stable or resonant value of 
this total energy is reflected as a bump in the spectrum 
of the first particle. Referring to the inset of Fig. 1, 
consider a particle of momentum pi striking particle 2 
and yielding a particle of momentum p3 and a group 
of one or more particles whose momenta add up to 

* This work was done under the auspices of the U. S. Atomic 
Energy Commission. 

t Present address: Physics Department, University of Illinois, 
Urbana, Illinois. 

X Present address: Enrico Fermi Institute for Nuclear Studies, 
University of Chicago, Chicago, Illinois. 

§ Present address: Aerospace Corporation, El Segundo, 
California, 

pw. Energy and momentum conservation gives pw = pi 
— p3 and Ew==Ei+M2—Ez= (|p«>|2+w2)1/2, where w is 
the "mass" or total energy in the rest system defined 

FIG. 1. Kinematical plots of H3 and He3 momentum from p-\-d 
collisions with 740-MeV protons. The curves are plotted versus 
the laboratory angle of the H3 or He3 for various values of w, 
the "mass" of the system produced with the H3 or Hes. 


